

 1

Software Architecture of Sensor Data Distribution
In Planetary Exploration

Charles Lee

SAIC
NASA Ames Research Center

Moffett Field, CA. 94035
650-604-6054

clee@mail.arc.nasa.gov

Richard L. Alena

NASA Ames Research Center
Moffett Field, CA. 94035

650-604-0262
Richard.L.Alena@nasa.gov

Thom Stone

Computer Science Corporation
NASA Ames Research Center

Moffett Field, CA. 94035
650-604-4971

tstone@arc.nasa.gov

John Ossenfort

SAIC
NASA Ames Research Center

Moffett Field, CA. 94035
650-604-0159

jossenfort@mail.arc.nasa.gov

Ed Walker

MCT
NASA Ames Research Center

Moffett Field, CA. 94035
650-604-1086

ctmwalker@mail.arc.nasa.gov

Hugo Notario

Foothill-DeAnza College
NASA Ames Research Center

Moffett Field, CA. 94035
650-604-4036

hnotario@mail.arc.nasa.gov

Abstract—Data from mobile and stationary sensors1,2 will
be vital in planetary surface exploration. The distribution
and collection of sensor data in an ad-hoc wireless network
presents unique challenges. Some of the conditions
encountered in the field include: irregular terrain, mobile
nodes, routing loops from clients associating with the wrong
access point or repeater, network routing reconfigurations
caused by moving repeaters, signal fade, and hardware
failures. These conditions present the following problems:
data errors, out of sequence packets, duplicate packets, and
drop out periods (when the node is not connected). To
mitigate the effects of these impairments, robust and reliable
software architecture tolerant of communications outages
must be implemented. This paper describes such a robust
and reliable software infrastructure that meets the
challenges of a distributed ad hoc network in a difficult
environment and presents the results of actual field
experiments testing the principles and exploring the
underlying technology.

TABLE OF CONTENTS

1. INTRODUCTION..1
2. TECHNICAL BACKGROUND2
3. ARCHITECTURE DESIGN4
4. FIELD TESTS AND LESSONS LEARNED..................6
5. CONCLUSIONS ...7
REFERENCES ...7
1
1 0-7803-9546-8/06/$20.00© 2006 IEEE.
2 IEEEAC paper #1168, Version 1, Updated Oct 18, 2005

BIOGRAPHY .. 7

1. INTRODUCTION

Sensor data is an essential part of planetary surface
exploration. Sensor data arises from status monitoring,
system health assessment as well as scientific sampling. All
are required for the success of the mission and sensor data is
required for all aspects of a mission:

− Planning requires sensor data as input to determine
location, environment and distances.

− Scheduling requires sensor information for calculating
duration, time, position, and routes.

− Operation requires sensor information to calculate
location, progress, health status, etc.

Sensor data steams are in real-time and are time critical.
Parallel processing of sensor data to produce useful
information introduces reliability issues. The two major
causes of data loss are the burden of communications
overhead and packet drops plus the difficulty of
multithreaded programming. Packet loss in wireless systems
can be caused by many factors:

 2

− Congestion

− Moving out of range of base station

− RF interference

− Multi-paths

− Obstacles to line of sight

− Routing problems

The basic problem we are attempting to address is how to
transmit sensor data accurately over a wireless infrastructure
to single or multiple receivers where the networks may have
short duration outages. In planetary exploration,
environment could be very difficult where packet loss and
even loss of signal, temporarily disconnected networks,
specifically, short duration outages are the norm.

The solution chosen by us was to use software middleware
techniques to overcome the communication blockage
problems. Although this work was done for surface
communications, it could well have application to other data
management areas, such as orbital asset management,
spacecraft tracking and control, and test bed data
distributions. Satellite constellations usually consist of
many instruments and sensors producing multiple steams to
multiple consumers of the data. Satellites can experience
periods of a high rate of data errors and periods of loss of
signal. Like our surface data, spacecraft sensor data can
have highly distributed users, some on different planets.

We experimented with different schema frameworks to
determine a method to find an optimal system for robustness
and reliability of sensor data for surface communications.

Ultimately, we selected Message Oriented Middleware
(MOM) for our distributed infrastructure [3]. Message
Oriented Middleware is a category of inter-application
communication software that presents an asynchronous
message-passing model as opposed to a request/response
model.

MOMs have the following attributes:

− Fast

− Reliable

− Asynchronous

− Guaranteed message delivery

− Receipt notification

− Transaction control

As far as the client software is concerned, MOM is
indistinguishable from real-time processing [4]. The
primary advantage of a message-oriented communications

protocol is the ability to store, route, and resend a message
that needs to be delivered.

2. TECHNICAL BACKGROUND

Most MOM systems provide persistent storage to hold
messages until they are successfully transferred. This means
that it is not necessary for the sender and receiver to be
connected when data are created. This is useful for dealing
with faulty connections, unreliable networks, and timed
connections (where communications is only available
during predictable periods). It also means that if a receiver
fails to receive a message for any reason, the sender can
continue unaffected, since the messages will be held in the
message store and will be transmitted when the receiver
reconnects.

MOM systems usually present two messaging models, but
not all MOMs support both models:

− Point-To-Point

− Publish-Subscribe

Point-to-point:

This model [2] is based on message stores known as queues.
A sender sends a message to a specified queue and a
receiver receives messages from the queue. A queue can
have multiple senders and receivers, but an individual
message can only be delivered to one receiver. If multiple
receivers are listening for messages on a queue, the
underlying MOM system usually determines which receiver
will receive the next message. If no receivers are listening
on the queue, messages remain in the queue until a receiver
attaches to the queue.

Sender

Sender

Sender

Message
Queue Receiver

Message
Server

Sender

Sender

Sender

Message
Queue Receiver

Message
Server

Figure 1 – Point to Point Messaging

Point-to-Point Messaging—the critical aspect of point-to-
point messaging is that even though there may be multiple
senders of messages, there is only a single receiver for the
messages.

 3

End (client) systems may only send messages, only receive
messages, or both send and receive messages. Another
client can be sending and/or receiving messages at the same
time. In the simplest case, one client is the sender of the
message and the other client is the receiver of the message.

There are two basic types of point-to-point messaging
systems. The first one involves a client that directly sends a
message to another client. The second and more common
implementation is based on the concept of a Message
Queue. Such a system is shown below.

Publish-Subscribe:

This model [1] is based on message stores known as topics.
Publishers send messages to a topic. Multiple subscribers
can retrieve messages from a topic. When multiple
applications need to receive the same messages, Publish-
Subscribe Messaging is required. The central concept in a
Publish-Subscribe Messaging system is the “Topic.”
Multiple publishers may send messages to a topic, and all
subscribers to that topic receive all the messages sent to that
topic. This model, as shown in Figure 2, is extremely useful
when a group of applications want to notify each other of a
particular occurrence.

In Publish-Subscribe Messaging, there may be multiple
senders and multiple receivers. Point-to-point can have
multiple senders but only one receiver.

Overview of Message Services

Typically a message service is implemented using a Java
framework. A Message-Driven Bean (MDB) is an
Enterprise Java Bean (EJB) that functions as a message
consumer. Unlike session beans or entity beans, clients
cannot access MDBs directly. Also, unlike session beans
and entity beans, an MDB does not have remote or home
interfaces. The only access a client has to an MDB is
through a JAVA Messaging Service (JMS) destination
(topic or queue) to which the MDB is listening.

 An MDB must implement two interfaces:

1. javax.jms.MessageListener—this interface defines
the onMessage callback method. When a message
is put on the queue/topic, the onMessage method
of the MDB is called by the EJB container and
passes the actual message.

2. javax.ejb.MessageDrivenBean—this is the EJB
interface that contains the EJB lifecycle methods:
• ejbCreate()—called by the EJB container

when the MDB is created.

• ejbRemove()—called by the EJB container
when the MDB is destroyed or removed from
the EJB pool.

• setMessageDrivenContext(MessageDrivenCo
ntext context)—called prior to ejbCreate and
passed the message-driven context by the EJB
container.

An MDB must declare deployment information about itself
in a deployment-descriptor file named ejb-jar-xml. The EJB
container handles the duties of subscribing the bean to the
topic or connecting it to the queue based on information
placed in the deployment descriptor. The context has
runtime information, such as the actual transaction data.

The diagram in Figure 2 illustrates the interactions between
a JMS message, a client, a topic, an application server, an
EJB container, and MDB instances.

As mentioned before, MDBs do not have remote or local
interfaces as with session beans and entity beans. MDBs are
not located by client classes and client classes do not
directly invoke methods on them. All access to a MDB is
through a JMS topic or queue that directs messages at the
MDB through the EJB container. The EJB container
ultimately passes the JMS message to the MDB through the
bean’s onMessage method. All MDBs must implement the
javax.ejb.MessageDrivenBean and
javax.jms.MessageListener interfaces, as the example
illustrates.

The JMS provides a standard Java-based interface to the
message services of a MOM of a non-JAVA based schema.
This means that various brands of middleware can
interoperate.

Publisher

Publisher

Publisher

Topic

Subscriber

Subscriber

SubscriberMessage
Server

Publisher

Publisher

Publisher

Topic

Subscriber

Subscriber

SubscriberMessage
Server

Figure 2 - Publish Subscriber Messaging

To illustrate the relationship of the classes, Figure 3 shows
class hierarchy of the messaging services. It also shows the
differences between the Publish-subscribe and Point-to-
point messaging in table format.

 4

JMS Parent Publish-subscribe
Domain

Point-to-point
Domain

Destination Topic Queue

Connection
Factory

Topic Connection
Factory

Queue Connection
Factory

Connection Topic Connection Queue Connection

Session Topic Session Queue Session

Message
Producer

Topic Publisher Queue Sender

Message
Consumer

Topic Subscriber Queue Receiver,
Queue Browser

Figure 3 - Publisher and subscriber class hierarchy.

3. ARCHITECTURE DESIGN

We selected the Publish-Subscribe architecture for data
distribution. In our project requirements, the data is to be
distributed to multiple remote clients and the publisher may
publish the data to a remote machine. Implementing the
Publish-Subscribe architecture satisfies these requirements.

 Astronaut Backpack

Windows

JBoss /JMS
Mex

Switchboard Publisher

Brahms Virtual
Machine

Astro
MEX

Com Agent

Astro
Personal

Agent

Mex GPS
API

dGPS

Serial dGPS - MCA

Corba/IIOPMEX GPS/ dGPS to ERA

Mex dGPS /GPS

Astronaut Backpack

Windows

JBoss /JMS
Mex

Switchboard Publisher

Brahms Virtual
Machine

Astro
MEX

Com Agent

Astro
Personal

Agent

Mex GPS
API

dGPS

Serial dGPS - MCA

Corba/IIOPMEX GPS/ dGPS to ERA

Mex dGPS /GPS

Figure 4 – GPS data distribution architecture.

During three years of field trials our software was deployed
as follows.

Figure 4 shows an Astronaut carrying a backpack with our
software running on a computer inside. A Global
Positioning System (GPS) unit is connected to the computer
and the data is distributed to the JMS server using the GPS
server model. The client accesses the data by subscribing to
the topic using the API provided by the GPS server
developer. Biological information from sensors attached to
the Astronaut is also distributed using this architecture as
shown in Figure 5 below.

Astronaut Backpack

Windows

JBoss/JMS
Mex

Switchboard
Publisher

Brahms Virtual
Machine

Astro
MEX

Com Agent

Astro
Personal

Agent

Mex Nonin
API

Nonin

Serial
Nonin Bio Sensor

MEX Nonin Publisher

Mex Nonin

Astronaut Backpack

Windows

JBoss/JMS
Mex

Switchboard
Publisher

Brahms Virtual
Machine

Astro
MEX

Com Agent

Astro
Personal

Agent

Mex Nonin
API

Nonin

Serial
Nonin Bio Sensor

MEX Nonin Publisher

Mex Nonin

Figure 5 - Biosensor architecture.

We have collaborated with a Robotic Rover team (Extra
Vehicular Activity Robotic Assistant [ERA]) from Johnson
Space Center in several exploration field tests (see Lessons
Learned). The sensor data needs to be distributed to the
ERA server so that the robot can perform commands such
as:

− Follow the astronaut
− Take a picture of an area that is of interest to the

astronaut
− Take a picture of an astronaut
− Make a voice note
− Open a sample bag for a specimen

Since the ERA team is using a Common Object Request
Broker Architecture (CORBA) framework [5,6] for their
distributed object model, we needed to distribute the data
across a CORBA object by connecting our CORBA client
with the sensor and pushing the data to the Rover object
running on a CORBA Object Request Broker (ORB).

The architecture of the data distribution to the ERA server is
shown in Figure 6. The ERA implements a server
(Executor) to accept the data and store it in local memory
for a finite period of time. The data must be pushed at a rate
that refreshes the data before the memory times out.

 5

ERA
Linux

Differential

ERA

Exec

Brahms Virtual
Machine

Era

Com Agent

Era
Personal

Agent

Serial

dGPS

ERA dGPS
ServerFrom astronaut

ERA
Linux

Differential

ERA

Exec

Brahms Virtual
Machine

Era

Com Agent

Era
Personal

Agent

Serial

dGPS

ERA dGPS
ServerFrom astronaut

Figure 6 - The ERA CORBA server.

The subscribed client will receive the stream of data by
intercepting the message listener. An example of this type
of client is the rover monitor, which can show the
movement of the rover on a map in the real time. Figure 7
shows the monitor screen from a pre-field test at Moffett
Field in California.

Figure 7 - Navigation monitor.

The circle with cross is the moving cursor that shows the
rover location by interpreting the coordinates received from
subscribing to the GPS topic. The accuracy of the location
was within five centimeter in the last field test.
Reliable and Robust

The architecture we have described has the capability of
providing reliability and robustness during short outages.
However, some issues are not addressed directly by our
architecture itself. Of most concern, are longer duration
network outages in severe environments.

The low power output and delay sensitive protocols of
802.11b are prone to fading, especially when used over
multi-hop long haul point-to-point circuits. Additional
problems are caused when equipment moves out of the line
of sight or encounters routing difficulties as equipment
moves and long duration outages occur.

The first software challenge is to recognize that a
communications outage is occurring. Fortunately, both
JAVA and CORBA provide this functionality. JAVA
automatically sets a software exception that can be detected
and CORBA has a ping function that can be used to
explicitly insure the network is connected before do the
actually connection.

Figure 8 – Astronaut and robotic assistant at the MDRS in
Utah.

We have the tested our methodology during simulation tests
at the Mars Desert Research Station (MDRS) in Utah during
the spring of each year from 2002-05. These “Mobile
Agent” expeditions tested interactions between astronauts
and robotic assistants. They were a collaborative effort
between several NASA centers and university investigators.
We used 802.11b to communicate between astronaut, robot
and the base station. Some of these links were over several
kilometers, which required installation of repeaters in
temporary locations that subjected them to wind and rain. A
satellite link was used to send the data via the NASA
Research and Engineering Network (NREN) from base
camp to multiple researchers at their home institutions.

As the astronauts and robots move, they come in and out of
wireless signal coverage. Under such conditions, with short-
term outages the norm, data distribution becomes unreliable.
Connections can be lost either between the astronaut and the
JMS server, or from the ERA robot to the JMS server (or
both). Any of these data interruptions will keep the sensor
data from reaching the proper destination.

A software workaround was devised to mitigate this
impairment. A retry loop was established which continued
to test the path until it has recovered. To prevent the retries
from impacting data collection from the sensor, tying up
CPU usage, or other resources, a counter was implemented

 6

to wait a period of time (in seconds) before the connection
was retried. The data was stored until connectivity was re-
established.

The logic path used for implementing timeout loops in the
subscriber model is as follows:

In the processing of data loop
If (reconnectCounter==0)
 DoReconnect();
 Publish();
Else
 ReconnectCounter--;
Endif

When (ConnectionException)
 SetReconnectCounter;
 End loop

Another important issue was when the SerialConnection
class was used to acquire data from the COM port; it should
not be interrupted by other tasks, as the data flow received
was a continuous real-time stream. Separate threads were
implemented to prevent interruption of data distribution and
the SerialConnection class dedicated to acquiring and
storing the data in memory for further processing.

4. FIELD TESTS AND LESSONS LEARNED

Field tests took place at MDRS, in an isolated area in Utah.
 A satellite link was connected to the high-speed NREN
backbone through Glenn Research Center (GRC) in Ohio.
Astronauts (fully suited) were paired with robotic assistants.
They communicated with each other over wireless links and
the robot responded to voice commands from the astronaut.
The robot contained a mobile wireless local area network
(WLAN) repeater. The activities were monitored from a
base camp several kilometers away. Additional repeaters
were situated on all terrain vehicles (ATV) and nearby
hilltops.

Figure 9 – Mobile Agents communication topology.

Experiences from the 2003 Mobile Agents field season
included an attempt at Ames Research Center (ARC) to
integrate the equipment (robots, wireless, etc.) and software
from the many contributing groups at ARC and Johnson
Space Center before deploying to the field, but lack of time
and travel resources forced a very superficial integration
effort. Various groups were also in development stage until
just before the deployment. It was almost expected that we
would experience problems and would have to redesign in
the field.

The first week of the two-week period was marked by
problems related to the substantial packet delay and
frequent connectivity drops. The software responsible for
GPS location service failed to correctly establish
coordinates when the GPS real-time data from the
equipment in the backpack was delayed. This made testing
astronaut-robot-operations center voice recognition and
command processing impossible. Additionally, overheating
problems with the backpack computers and routing
problems on our multi-hop wireless system were
experienced.

Several steps to mitigate these problems were attempted. A
Network Time Protocol (NTP [RFC 1305]) Timeserver was
implemented to timestamp all GPS and biosensor data. This
made it possible to correctly correlate the location of the
astronaut or the robot with a time series. Sensor message
processing was moved to a computer that had less network
traffic and less extraneous processing. Also, publish-
subscribe middleware was fully implemented.

These measures and further tuning of the wireless
infrastructure to fix some routing problems, and adding an
additional fan to the backpack led to several successful
simulations.

 7

Experiences during the 2004 field season were more
positive, even with some rather severe weather and dust
storms. Before deployment the astronaut backpack was
redesigned, adding better ventilation to accommodate an
updated rugged laptop computer, which had more memory
and a mobile Pentium processor with a wider operating
temperature range.

The WLAN complexity (mobile access points on ATV and
mobile robots with repeater sites on far away hills) was
simplified and multi-pathing and channel overlap were
reduced. Routing between the elements was rationalized to
prevent loops, which led to higher bandwidth and better
throughput.

The distributed sensor architecture was tested on by moving
the JMS server to various computers on the system. All
worked as designed, although response was still slow but
tolerable.

The 2005 season built on the successes of 2004. The
software was optimized and the client API redesigned. The
client is the “subscriber” to the sensor data message server.
One improvement was to have the software “sleep” when
no messages are in the queues and awake when they are
available. This cut the CPU and memory requirements
substantially. The sensor data have duty cycles of less than
10 hertz, thus leaving substantial periods for other software
tasks. Improvements were also made in the voice loop
software, the mobile agent software, and the voice
recognition software. These upgrades produced improved
performance and seamless transition in and out of wireless
coverage.

5. CONCLUSIONS

The field tests and experiments show that the distributed
components model utilizing the JMS architecture is very
suitable for real time sensor data distribution. It produces
reliable and robust data streams to multiple clients in real-
time. The publish-subscriber model is very scalable, even
for processing data from many sensors. For publishing data
from multiple sensors, message beans and topics can be
easily created for each occurrence of a sensor.

Longer duration network outages, which are common in the
field, can be easily mitigated by simple software
modifications.

These techniques have relevance to situations where
multiple assets are distributed on the ground and in orbit,
and sensor and other data are to be distributed to multiple
consumers locally or on Earth.

REFERENCES

[1] Jameela Al-Jaroodi, Nader Mohamed, Hong Jiang,
and David Swanson, “Middleware Infrastructure for
Parallel and Distributed Programming Models in
Heterogeneous Systems”, IEEE Transactions On
Parallel and Distributed Systems, Vol. 14, No. 11,
November 2003.

[2] Charles Zhang and Hans-Arno Jacobsen, “Refactoring
Middleware with Aspects”, IEEE Transactions On
Parallel and Distributed Systems, pp1058-1073, Vol.
14, No. 11, November 2003.

[3] L. Garces-Erice and E.W. Biersack and P. Felber and
K.W. Ross and G. Urvoy-Keller. ”Hierarchical Peer-to-
Peer Systems”, Parallel Processing Letters, Volume
13, Issue 4, December 2003.

[4] P. Eugster, P. Felber, R. Guerraoui, and A.-M.
Kermarrec,”The Many Faces of Publish/Subscribe”,
ACM Computing Surveys, Volume 35, Issue 2, pp 114-
131, June 2003.

[5] Victor Fay-Wolfe, Lisa C. DiPippo, Gregory Cooper,
Russell Johnston, Peter Kortmann, and Bhavani
Thuraisingham, “Real_Time CORBA”, IEEE
Transactions On Parallel and Distributed Systems,
Vol. 11, No. 10, October 2000.

[6] Wenbing Zhao, Louise E. Moser, and P. Michael
Melliar-Smith, “Unification of Transactions and
Replication in Three-Tier Architectures Based on
CORBA”, IEEE Transactions on Dependable and
Secure Computing, pp 14- 23, Vol. 2, No. 1, January-
March 2005.

BIOGRAPHY

 Charles Lee, employed by
SAIC, is a Technical Lead on Mobile Agents project at
NASA Ames Research Center. He holds a Ph.D. in systems
engineering and computer science from Oakland
University, in Rochester, Michigan. Completed research
projects includes robust GPS switchboard on-demand
services that provide GPS information with awareness of

 8

loss and the ability to regain wireless network connections,
and a store and forward architecture to maintain data
continuity in the event of network connection loss. Other
work includes join development of custom software to
provide access to avionics data for Advanced Diagnostics
System (ADS) and Integrated System Health Management
(ISHM) applications, and collection and organization of
International Space Station (ISS) data sets by fault
scenario, along with liaison with ADS, ISHM developers
and users in the design of data interfaces, user interfaces
and tools relevant to ADS, ISHM on ISS. He developed the
first version of Caution and Warning cube visualization
software that handles the command and data handling
events for fault detection, and then was evolved to Strider
application.

 Thom Stone is a Senior
Computer Scientist with Computer Sciences Corporation.
He is attached to the NASA NREN (NASA Research and
Engineering Network) project at Ames Research Center
(ARC). Stone has been at NASA ARC employed by various
contractors since 1989. He was an engineer with the NASA
Science Internet (NSI) project office where he led the
project that bought reliable Internet connections to remote
locations including US bases in Antarctica, McMurdo
Station and Amundson Scott South Pole Station. He was
principal engineer for communications for the NASA Search
for Extraterrestrial Intelligence (SETI) project and was a
senior engineer for the Space Station Biological Research
Project (SSBRP). Before his involvement with NASA, Stone
was employed in the computer and communications
industry and taught telecommunications at the
undergraduate level.

 Richard Alena is a
computer engineer and the group lead for the Intelligent
Mobile Technologies (IMT) Lab and the Mobile Exploration

System (MEX) testbed at NASA Ames Research Center. The
IMT team integrates mobile hardware and software
components into unique systems capable of extending
human performance aboard spacecraft during flight and
payload operations. He was principal investigator for the
Wireless Network Experiment flown aboard Shuttle and
Mir, technology later adopted by the International Space
Station Program. Alena spent four summers in the
Canadian Arctic developing mobile technologies for human
planetary exploration. He is a co-investigator on the Mobile
Agents project, which is conducting field simulations in the
American southwest. He has a MSEE&CS from University
of California, Berkeley.

 John Ossenfort is a network/
systems administrator at the NASA Ames Research Center,
specializing in wireless communications. He has been
acting systems administrator for the IMT Lab and the MEX
testbed for the past three years and has accompanied the
Mobile Agents team on four field simulations in the
Arizona/Utah desert, assisting in all aspects of wireless
network design, deployment, troubleshooting and
maintenance. He is currently working on a wide array of
projects, from Martian subsurface drilling simulations to
Integrated Systems Health Management for the
International Space Station. John has a dual BA degree in
Anthropology and East Asian Studies from Washington
University in St. Louis. He currently resides in Los Gatos,
California.

 9

 Ed Walker is a hardware and
networking specialist with the Intelligent Mobile
Technologies (IMT) team at NASA Ames Research Center.
He is a member of the team developing and testing the
capabilities of the Mobile EXploration (MEX) testbed. The
MEX System is a model for human planetary exploration
that incorporates rugged computing, long-range wireless
communication and mobility in support of planetary
explorers. He graduated Foothill College in Los Altos,
California with AS degrees in Data Communication &
Network Management as well as Enterprise Networking.

 Hugo A. Notario has been
involved in software and hardware architecture since 1994.
He has a BA in Industrial Engineering with an option of
electronics in 1988 and 1997 earned an AA in Computer
Service Technology. In the past 5 years I have earned
several technical degrees in software and networking. I am
currently working on my second bachelor in Computer
Science. He joined NASA/Ames around two years ago in
which he has been involved in Sensor Data Distribution in
Planetary Exploration.

 10

